Answer :
The resistance of the cylindrical wire is [tex] R=\frac{\rho l}{A} [/tex].
Here [tex] R [/tex] is the resistance, [tex] l [/tex] is the length of the wire and [tex] A [/tex] is the area of cross section. Since the wire is cylindrical [tex] A=\frac{\pi d^2}{4} [/tex] .
Comparing two wires,
[tex] R_1=\frac{\rho_1 l}{A_1} \\
R_2=\frac{\rho_2 l}{A_2} [/tex]
Dividing the above 2 equations,
[tex] \frac{R_1}{R_2}=\frac{\rho_1 }{\rho_2} \frac{A_2 }{A_1} \\
\frac{R_1}{R_2}=\frac{\rho_1 }{\rho_2} \frac{d_2^2 }{d_1^2} \\ [/tex]
Since [tex] d_2=2d_1 [/tex]
The above ratio is
[tex] \frac{R_1}{R_2}=\frac{1.68(10^{-8}) }{1.59(10^{-8}) } (4)\\
\frac{R_1}{R_2}=4.2264 [/tex]
We also have,
[tex] \frac{E/R_1}{E/R_2} =\frac{I_1}{I_2} \\
I_2=\frac{R_1}{R_2}I_1 \\
I_2=4.23I_1 [/tex]
The current through the Silver wire will be 4.23 times the current through the original wire.