Answer :
Answer : x = 3.8
Explanation:
Since we have given that
[tex]2.5(10-x)+10=72-1.5(5x+12)[/tex]
We are basically use the method of transposing to solve the linear equation in one variable :
[tex]25-2.5x+10=72-7.5x-18\\35-2.5x=54-7.5x\\\text{(collect the like terms by using the method of transposing )}\\7.5x-2.5x=54-35\\5x=19\\x=\frac{19}{5}\\x=3.8[/tex]
Hence, x = 3.8
Consider the given equation:
[tex]2.5(10-x)+10 = 72 -1.5(5x+12)[/tex]
Applying distributive property, [tex]a(b+c) = ab + ac[/tex]
[tex](2.5 \times 10) + (2.5 \times -x) + 10 = 72 - (1.5 \times 5x) + (-1.5 \times 12)[/tex]
[tex]25 - 2.5x + 10 = 72 - 7.5x - 18[/tex]
Adding and subtracting like terms, we get
[tex]35-2.5x = 54 - 7.5x[/tex]
[tex]35 - 54 = 2.5x -7.5x[/tex]
[tex]-19 = -5x[/tex]
[tex]x = \frac{19}{5}[/tex]
x = 3.8
So, the value of 'x' in the given equation is 3.8