Answer :

gmany

Parallel lines have the same slope.

We have the general form of line. Transform to the slope-intercept form:

[tex]y=mx+b[/tex]

m - slope, b - y-intercept

[tex]7y+2x-10=0[/tex]      subtract 2x from both sides

[tex]7y-10=-2x[/tex]       add 10 to both sides

[tex]7y=-2x+10[/tex]       divide both sides by 7

[tex]y=-\dfrac{2}{7}x+\dfrac{10}{7}\to m=-\dfrac{2}{7}[/tex]

Therefore we have: [tex]y=-\dfrac{2}{7}x+b[/tex].

The line passes through the point (2, 2). Substitute the coordinates of the point to the equation of a line:

[tex]2=-\dfrac{2}{7}(2)+b[/tex]

[tex]2=-\dfrac{4}{7}+b[/tex]      add [tex]\dfrac{4}{7}[/tex] to both sides

[tex]2\dfrac{4}{7}=b[/tex]

[tex]y=-\dfrac{2}{7}x+2\dfrac{4}{7}[/tex]

[tex]y=-\dfrac{2}{7}x+\dfrac{18}{7}[/tex]     multiply both sides by 7

[tex]7y=-2x+18[/tex]       subtract 7y from both sides

[tex]0=-2x-7y+18[/tex]      change the signs

[tex]2x+7y-18=0[/tex]

Answer:

[tex]y=-\dfrac{2}{7}x+\dfrac{18}{7}[/tex]  slope-intercept form

[tex]2x+7y-18=0[/tex]   general form

Other Questions