Answer :
Answer:
a_n = 2.2 + 0.6 n
a_50 = 32.2
Step-by-step explanation:
What's the common difference of this series?
[tex]a_1 = 2.8[/tex]
[tex]a_2 = 3.4[/tex]
Common difference = [tex]a_2 - a_1 = 3.4 - 2.8 = 0.6[/tex].
Expression for the nth term:
[tex]a_n = a_1 + (n - 1) \cdot\text{Common Difference} \\\phantom{a_n } = 2.8 + 0.6 \; (n-1) \\\phantom{a_n} = 2.8 + 0.6 \; n - 0.6\\\phantom{a_n} = 2.2 + 0.6\; n[/tex]
n = 50 for the fiftieth term. Therefore
[tex]a_{50} = 2.2 + 0.6 \times 50 = 32.2[/tex].