Answer :
Answer:
[tex]x=3[/tex] or [tex]x=4[/tex]
Step-by-step explanation:
the given function is;
[tex]f(x)=x^3-9x^2+26x-24[/tex]
According to the rational roots theorem, the possible rational roots are;
[tex]\pm1,\pm2\pm3,\pm4,\pm6,\pm8,\pm12,\24[/tex].
According to the Remainder Theorem, if [tex]f(a)=0[/tex], then [tex]x=a[/tex] is a zero of the polynomial.
[tex]f(3)=3^3-9(3)^2+26(3)-24[/tex]
[tex]f(3)=27-81+78-24[/tex]
[tex]f(3)=24-24=0[/tex]
Also,
[tex]f(4)=4^3-9(4)^2+26(4)-24[/tex]
[tex]f(4)=64-144+104-24[/tex]
[tex]f(4)=64-64=0[/tex]
Therefore the other roots are;
[tex]x=3,x=4[/tex]