Answered

alpha and beta are the zeros of the polynomial x^2 -(k +6)x +2(2k -1). Find the value of k if alpha + beta = 1/2 alpha beta(ITS URGENT)

Answer :

Answer:

[tex]k=\frac{-11}{2}[/tex].

Step-by-step explanation:

We are given [tex]\alpha[/tex] and [tex]\beta[/tex] are zeros of the polynomial [tex]x^2-(k+6)x+2(2k-1)[/tex].

We want to find the value of [tex]k[/tex] if [tex]\alpha+\beta=\frac{1}{2}[/tex].

Lets use veita's formula.

By that formula we have the following equations:

[tex]\alpha+\beta=\frac{-(-(k+6))}{1}[/tex]  (-b/a where the quadratic is ax^2+bx+c)

[tex]\alpha \cdot \beta=\frac{2(2k-1)}{1}[/tex] (c/a)

Let's simplify those equations:

[tex]\alpha+\beta=k+6[/tex]

[tex]\alpha \cdot \beta=4k-2[/tex]

If [tex]\alpha+\beta=k+6[/tex] and [tex]\alpha+\beta=\frac{1}{2}[/tex], then [tex]k+6=\frac{1}{2}[/tex].

Let's solve this for k:

Subtract 6 on both sides:

[tex]k=\frac{1}{2}-6[/tex]

Find a common denominator:

[tex]k=\frac{1}{2}-\frac{12}{2}[/tex]

Simplify:

[tex]k=\frac{-11}{2}[/tex].

Other Questions