Answer :

luisejr77

Answer: Option A

[tex]x=\frac{1+\sqrt{83}i}{6}[/tex] or [tex]x=\frac{1-\sqrt{83}i}{6}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]3x^2-x+7=0[/tex]

So

[tex]a=3\\b=-1\\c=7[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-1)\±\sqrt{(-1)^2-4(3)(7)}}{2(3)}[/tex]

[tex]x=\frac{1\±\sqrt{1-84}}{6}[/tex]

[tex]x=\frac{1\±\sqrt{-83}}{6}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{1\±\sqrt{83}*\sqrt{-1}}{6}[/tex]

[tex]x=\frac{1\±\sqrt{83}i}{6}[/tex]

[tex]x=\frac{1+\sqrt{83}i}{6}[/tex] or [tex]x=\frac{1-\sqrt{83}i}{6}[/tex]

Other Questions