Answer :
Answer: The number of [tex]Fe^{2+}[/tex] ions in one molecule of hemoglobin are 4.
Explanation:
According to mole concept:
1 mole of an element contains [tex]6.022\times 10^{23}[/tex] number of atoms.
We are given:
Mass of 1 mole of hemoglobin = [tex]6.8\times 10^4g[/tex]
- Using above equation:
[tex]6.022\times 10^{23}[/tex] number of molecules have a mass of [tex]6.8\times 10^4g[/tex]
So, 1 molecule of hemoglobin will have a mass of [tex]\frac{6.8\times 10^4g}{6.022\times 10^{23}}\times 1=1.129\times 10^{-19}g[/tex]
It is also given that 0.33 mass % of hemoglobin has [tex]Fe^{2+}[/tex] ions
So, mass of [tex]Fe^{2+}[/tex] ions will be = [tex]\frac{0.33}{100}\times 1.129\times 10^{-19}g=3.7257\times 10^{-22}g[/tex]
- To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass of iron ion = [tex]3.7257\times 10^{-22}g[/tex]
Molar mass of iron ion = 55.85 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of }Fe^{2+}\text{ ion}=\frac{3.7257\times 10^{-22}g}{55.85g/mol}=6.67\times 10^{-24}mol[/tex]
- Using mole concept:
1 mole of an element contains [tex]6.022\times 10^{23}[/tex] number of atoms.
So, [tex]6.67\times 10^{-24}[/tex] moles of hemoglobin will contain = [tex]6.022\times 10^{23}\times 6.67\times 10^{-24}=4[/tex]
Hence, the number of [tex]Fe^{2+}[/tex] ions in one molecule of hemoglobin are 4.