Answer :
Answer:
[tex]-\frac{1}{12}[/tex]
Explanation:
We are given that
[tex]g(x)=\frac{2}{x+3}[/tex]
Interval=[1,3]
We h of have to find the average rate of change of g(x).
Let a=1 and b=3
[tex]g(1)=\frac{2}{1+3}=\frac{2}{4}=\frac{1}{2}[/tex]
[tex]g(3)=\frac{2}{3+3}=\frac{2}{6}=\frac{1}{3}[/tex]
Mean value theorem
Average rate of change of g(x)=[tex]\frac{g(b)-g(a)}{b-a}[/tex]
Using mean value theorem
Average rate of change of g(x)=[tex]\frac{\frac{1}{3}-\frac{1}{2}}{3-1}=-\frac{1}{2\times 6}[/tex]
Average rate of change of g(x)=[tex]-\frac{1}{12}[/tex]