Answer :
Answer: Number of months = 66.87 months
Explanation:
Given that,
Monthly Payment = $500
Interest rate(r) = 1.95% per month
Current Balance = $18,500
Number of months(t) = ?
[tex]Current\ balance = Monthly\ payment\times(\frac{1-present\ value\ factor}{r})[/tex]
[tex]Current\ balance = Monthly\ payment\times(\frac{1-\frac{1}{(1+r)^{t}} }{r})[/tex]
[tex]18,500 = 500\times(\frac{1-\frac{1}{(1+0.0195)^{t}} }{0.0195})[/tex]
[tex]\frac{18,500}{500}\times0.0195=1-\frac{1}{1.0195^{t} }[/tex]
[tex]\frac{1}{1.0195^{t}}=1-0.7215[/tex]
[tex]1.0195^{t}=\frac{1}{0.2785}[/tex]
[tex]1.0195^{t}=3.5906[/tex]
Taking log on both side
t log(1.0195) = log(3.5906)
[tex]t = \frac{0.5551}{0.0083}[/tex]
t = 66.87 months