Answer :

Answer:

The simplified given rational expression is [tex]\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}=\frac{2x^2+6x}{x+9}[/tex].

Step-by-step explanation:

Given rational expression is  

[tex]\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}[/tex]

Now to simplify the given rational expression:

[tex]\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}=\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}[/tex]

[In the above expression 6 and 3 cancelled and the result is 2, (x-2) and (x-2) getting cancelled each other]

[tex]=\frac{2x(x+3)}{x+9}[/tex]

Now applying distributive property to the above expression

[tex]=\frac{2x^2+6x}{x+9}[/tex]

Therefore [tex]\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}=\frac{2x^2+6x}{x+9}[/tex]

Therefore the  simplified given rational expression is [tex]\frac{6x(x+3)(x-2)}{3(x-2)(x+9)}=\frac{2x^2+6x}{x+9}[/tex]

Other Questions