Answer :

Answer:

The values are [tex]x=\frac{7}{2}[/tex] and [tex]y=\frac{5}{2}[/tex]

The solution is ([tex]\frac{7}{2}[/tex],[tex]\frac{5}{2}[/tex])

Step-by-step explanation:

Given equations are [tex]5x=7y\hfill (1)[/tex] and

[tex]x+7y=21\hfill (2)[/tex]

To solve the given equations by elimination method:

Equation (1) can be written as  [tex]5x-7y=0\hfill (3)[/tex] and

Now multiply the equation (2) into 5 we get

[tex]5x+35y=105\hfill (4)[/tex]

Subtracting equations (3) and (4) we get

[tex]5x-7y=0[/tex]

[tex]5x+35y=105[/tex]

_________________

-42y=-105

[tex]y=\frac{105}{42}[/tex]

Therefore [tex]y=\frac{5}{2}[/tex]

Substitute  the value [tex]y=\frac{5}{2}[/tex] in equation (1) we get

[tex]5x=7\times \frac{5}{2}[/tex]

[tex]5x=\frac{35}{2}[/tex]

[tex]x=\frac{35}{2\times 5}[/tex]

[tex]x=\frac{7}{2}[/tex]

Therefore [tex]x=\frac{7}{2}[/tex] and [tex]y=\frac{5}{2}[/tex]

The solution is ([tex]\frac{7}{2}[/tex],[tex]\frac{5}{2}[/tex])

Other Questions