Answer :

calculista

Answer:

[tex]f(x)=(x+3)^{2}-20[/tex]

Step-by-step explanation:

we have

[tex]f(x)=x^{2}+6x-11[/tex]

To convert to vertex form complete the square

[tex]f(x)=(x^{2}+6x+3^2)-11-3^2[/tex]

[tex]f(x)=(x^{2}+6x+9)-20[/tex]

Rewrite as perfect squares

[tex]f(x)=(x+3)^{2}-20[/tex] ----> equation in vertex form

The vertex is the point (-3,-20) (is a minimum)