Answer :
Answer: [tex]\bold{(6)\ \dfrac{5}{18}\qquad (7)\ \dfrac{1}{216}\qquad (8)\ \dfrac{1}{36}}[/tex]
Step-by-step explanation:
(6) Sum is 6 or doubles are rolled minus duplicates
(1,5) (2,4) (3,3) (4,2)(5,1) + (1,1)(2,2)(3,3)(4,4)(5,5)(6,6) - (3,3)
[tex]\dfrac{\# of\ outcomes}{total\ possible\ outcomes}=\dfrac{6}{36}+\dfrac{5}{36}-\dfrac{1}{36}=\dfrac{10}{36}\rightarrow\large\boxed{\dfrac{5}{18}}[/tex]
(7) First roll and Second roll and Third roll
[tex]\dfrac{\# of\ outcomes}{total\ possible\ outcomes}=\dfrac{1}{6}\times \dfrac{1}{6}\times \dfrac{1}{6}=\large\boxed{\dfrac{1}{216}}[/tex]
(8) First roll and Second roll
[tex]\dfrac{\# of\ outcomes}{total\ possible\ outcomes}=\dfrac{1}{6}\times \dfrac{1}{6}=\large\boxed{\dfrac{1}{36}}[/tex]