Answer :
The student with the largest measurement of percentage error is student 4. Option A is correct.
The percent error shows the disparity between the observed value and the actual value. It is given by the expression:
[tex]\mathbf{ \% \ error= \dfrac{v_A -v_E}{v_E}\times 100\%}[/tex]
For student 4: the percentage error can be computed as:
[tex]\mathbf{ \% \ error= \dfrac{9.78 -9.61}{9.61}\times 100\%}[/tex]
[tex]\mathbf{ \% \ error= 1.77 \%}[/tex]
For student 3; the percentage error is:
[tex]\mathbf{ \% \ error= \dfrac{9.78 -9.88}{9.88}\times 100\%}[/tex]
[tex]\mathbf{ \% \ error= -1.01 \%}[/tex]
For student 2; the percentage error is:
[tex]\mathbf{ \% \ error= \dfrac{9.78 -9.79}{9.79}\times 100\%}[/tex]
[tex]\mathbf{ \% \ error= -0.10}[/tex]
For student 1; the percentage error is:
[tex]\mathbf{ \% \ error= \dfrac{9.78 -9.78}{9.78}\times 100\%}[/tex]
[tex]\mathbf{ \% \ error= 0}[/tex]
Therefore, we can conclude that the student's measurement that has the largest percent error is student 4.
Learn more about percentage error here:
https://brainly.com/question/4170313?referrer=searchResults