Answer :

meerkat18
We are given with the expression  ( tan x + cot x )^2 and is asked to simplify the given expression.  cotangent is the inverse of tangent. Hence,  ( tan x + 1/tan x )^2 or ((tan^2 x + 1)/ tan x )^2. Further simplification using other identities could lead to sec^2x csc ^2 x. 

Answer:

The expression  [tex](\tan x+\cot x)^2[/tex] is same as  [tex]\sec ^2x+\csc^2x[/tex]

Step-by-step explanation:

Given expression [tex](\tan x+\cot x)^2[/tex]

We have to find an equivalent fraction to the given expression.

Consider the given expression [tex](\tan x+\cot x)^2[/tex]

Using algebraic identity,

[tex](a+b)^2=a^2+b^2+2ab[/tex]

[tex](\tan x+\cot x)^2=\tan^2x+\cot^2x+2\tan x \cdot \cot x[/tex]

Using trigonometric identities,

[tex]\tan^2x=\sec ^2x-1\\\\\ \cot^2x=\csc^2x-1[/tex]

We have,

[tex]\Rightarrow \sec ^2x-1+\csc^2x-1+2\tan x \cdot \cot x[/tex]

Also, [tex]\tan x=\frac{1}{\cot x}[/tex], we have,

[tex]\Rightarrow \sec ^2x-1+\csc^2x-1+2\cdot \frac{1}{\cot x}\cdot \cot x[/tex]

On simplifying , we get,

[tex]\Rightarrow \sec ^2x-1+\csc^2x-1+2[/tex]

[tex]\Rightarrow \sec ^2x+\csc^2x[/tex]

Thus, the expression  [tex](\tan x+\cot x)^2[/tex] is same as  [tex]\sec ^2x+\csc^2x[/tex]

Other Questions