Answer :
Answer:
a) [tex] z_1 =\frac{20-19}{4} =0.25[/tex]
[tex] z_2 =\frac{15-19}{4} =-1[/tex]
And we can use the complement rule and we got:
[tex] P(z>0.25)=1-P(z<0.25)= 1-0.599=0.401[/tex]
[tex] P(z>-1)=1-P(z<-1)= 1-0.159=0.841[/tex]
And replacing we got:
[tex] P(X >20| X>15)= \frac{0.401}{0.841}= 0.477[/tex]
b) [tex] z_1 =\frac{20-19}{4} =0.25[/tex]
[tex] z_2 =\frac{18-19}{4} =-0.25[/tex]
And we can use the complement rule and we got:
[tex] P(z>0.25)=1-P(z<0.25)= 1-0.599=0.401[/tex]
[tex] P(z>-0.25)=1-P(z<-0.25)= 1-0.401=0.599[/tex]
And replacing we got:
[tex] P(X >20| X>18)= \frac{0.401}{0.599}= 0.669[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the length of time waiting to be seated of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(19,4.0)[/tex]
Where [tex]\mu=19[/tex] and [tex]\sigma=4.0[/tex]
Part a
For this cae we want to find this probability:
[tex] P(X >20| X>15)[/tex]
And if we use the conditional probability formula we got:
[tex] P(X >20| X>15)= \frac{P(X >20 \cap X>15)}{P(X>15)}=\frac{P(X>20)}{P(X>15)}[/tex]
We can solve the problem using the z score formula given by:
[tex] z = \frac{x-\mu}{\sigma}[/tex]
[tex] z_1 =\frac{20-19}{4} =0.25[/tex]
[tex] z_2 =\frac{15-19}{4} =-1[/tex]
And we can use the complement rule and we got:
[tex] P(z>0.25)=1-P(z<0.25)= 1-0.599=0.401[/tex]
[tex] P(z>-1)=1-P(z<-1)= 1-0.159=0.841[/tex]
And replacing we got:
[tex] P(X >20| X>15)= \frac{0.401}{0.841}= 0.477[/tex]
Part b
[tex] P(X >20| X>18)= \frac{P(X >20 \cap X>18)}{P(X>18)}=\frac{P(X>20)}{P(X>18)}[/tex]
We can solve the problem using the z score formula given by:
[tex] z = \frac{x-\mu}{\sigma}[/tex]
[tex] z_1 =\frac{20-19}{4} =0.25[/tex]
[tex] z_2 =\frac{18-19}{4} =-0.25[/tex]
And we can use the complement rule and we got:
[tex] P(z>0.25)=1-P(z<0.25)= 1-0.599=0.401[/tex]
[tex] P(z>-0.25)=1-P(z<-0.25)= 1-0.401=0.599[/tex]
And replacing we got:
[tex] P(X >20| X>18)= \frac{0.401}{0.599}= 0.669[/tex]