Answer :
Answer:
[tex] 48 \sqrt{2}[/tex]
Step-by-step explanation:
nth term of a Geometric sequence is given as:
[tex]t_n = ar^{n-1} \\ \therefore \: t_{10} = 3 \times (\sqrt{2}) ^{10-1} \\ \therefore \: t_{10} = 3 \times (\sqrt{2}) ^{9} \\ \therefore \: t_{10} = 3 \times (\sqrt{2}) ^{8} \times \sqrt{2}\\ \therefore \: t_{10} = 3 \times ({2}) ^{4} \times \sqrt{2}\\ \therefore \: t_{10} = 3 \times 16 \times \sqrt{2} \\ \huge \red { \boxed{\therefore \: t_{10} = 48 \sqrt{2} }}[/tex]
Hence, tenth term is [tex] 48 \sqrt{2}[/tex]