Answer :
Answer:
[tex]\delta l[/tex] = 0.428 mm
[tex]\delta d[/tex] = −0.0145 mm
Explanation:
given data
diameter = 20.9 mm
length = 203 mm
force = 46600 N
elastic modulus = 64.4 GPa
Poisson's ratio = 0.33
solution
we get here first area of cross section that is
Area = [tex]\frac{\pi }{4}d^2[/tex] .............1
put here value and we will get
Area = [tex]\frac{\pi }{4}\times 20.9^2[/tex]
Area = 343.06 mm²
and
now we get here change in direction of applied stress that is
[tex]\delta l[/tex] = [tex]\frac{Pl}{AE}[/tex] .....................2
put here value and we will get
[tex]\delta l[/tex] = [tex]\frac{46600\times 203}{343.06\times 64.4 \times 10^3}[/tex]
[tex]\delta l[/tex] = 0.428 mm
and
we know Poisson ratio will be here express as
m = [tex]- \frac{ \frac{\delta d}{d}}{ \frac{\delta l}{l}}[/tex] ........................3
0.33 = [tex]- \frac{ \frac{\delta d}{20.9}}{ \frac{0.428}{203}}[/tex]
[tex]\delta d[/tex] = −0.0145 mm
so here change in diameter have -ve sign so diameter is decrease.