Answer :
Answer:
[tex]t \approx 52.8\,s[/tex]
Step-by-step explanation:
The following expression needs to be solved:
[tex]10\,m\cdot \left[1-\cos \left(\frac{2\pi\cdot t}{150} \right)\right] = 16\,m[/tex]
[tex]1 - \cos \left(\frac{2\pi\cdot t}{150} \right) = 1.6[/tex]
[tex]\cos \left(\frac{2\pi\cdot t}{150} \right) = -0.6[/tex]
[tex]\frac{2\pi\cdot t}{150} = \cos^{-1}(-0.6)[/tex]
[tex]\frac{2\pi\cdot t}{150} = 0.704\pi[/tex]
[tex]t \approx 52.8\,s[/tex]