Answer :

MrRoyal

Answer:

[tex]13 + 7\sqrt{3}[/tex]

Step-by-step explanation:

Given

[tex]\frac{5 + \sqrt{3}}{2 - \sqrt{3}}[/tex]

Required

Rationalize

To rationalize, we have to multiply the numerator and the denominator by [tex]{2 + \sqrt{3}}[/tex]

This gives

[tex]\frac{5 + \sqrt{3}}{2 - \sqrt{3}} * \frac{2 + \sqrt{3}}{2 + \sqrt{3}}[/tex]

[tex]\frac{(5 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}[/tex]

Expand

[tex]\frac{5(2 + \sqrt{3})+\sqrt{3}(2 + \sqrt{3})}{2(2 + \sqrt{3}) - \sqrt{3}(2 + \sqrt{3})}[/tex]

Open the brackets

[tex]\frac{10 + 5\sqrt{3}+2\sqrt{3} + (\sqrt{3})^2}{4 + 2\sqrt{3} - 2\sqrt{3} - (\sqrt{3})^2}[/tex]

[tex]\frac{10 + 5\sqrt{3}+2\sqrt{3} + 3}{4 + 2\sqrt{3} - 2\sqrt{3} - 3}[/tex]

Collect like terms for ease of arithmetic operations

[tex]\frac{10 + 3 + 5\sqrt{3}+2\sqrt{3}}{4 -3 + 2\sqrt{3} - 2\sqrt{3}}[/tex]

[tex]\frac{13 + 7\sqrt{3}}{1 }[/tex]

[tex]13 + 7\sqrt{3}[/tex]

Hence,

[tex]\frac{5 + \sqrt{3}}{2 - \sqrt{3}}[/tex] is equivalent to [tex]13 + 7\sqrt{3}[/tex], after rationalizing the denominator

Other Questions