Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?

Answer :

Answer:

x  =  8   ( 20$ bills)

y  = 5    ( 10 $ bills)

z = 2     ( 5  $  bills)

Step-by-step explanation:

Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively

then according to problem statement, we can write

20*x + 10*y + 5*z = 220         (1)

We also know the total number of bills (15), then

x + y + z = 15     (2)

And that quantity of 20 $ bill is equal to

x = 3 + y     (3)

Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.

As    x = 3 + y    by substitution in equation (2)   and (1)

( 3 + y ) + y + z  = 15       ⇒   3 + 2*y + z = 15  ⇒  2*y + z = 12

20* ( 3 + y ) + 10*y + 5*z  = 220  ⇒ 60 + 20*y + 10*y + 5*z = 220

30*y + 5*z  = 160      (a)

Now we have only 2 equations

2*y + z = 12   ⇒    z = 12 - 2*y

30*y + 5*z  = 160     30*y  + 5* ( 12 - 2*y) = 160

30*y  + 60 - 10*y = 160

20*y = 100

y = 100/20       y = 5      Then by substitution in (a)

30*y + 5*z = 160

30*5  + 5*z = 160

150 + 5*z  = 160    ⇒     5*z = 10     z = 10/5      z = 2

And x

x + y + z = 15

x + 5 + 2 = 15

x = 8

Answer:

x=8 y=5 x=2

Step-by-step explanation: