Answer :
Answer:
a) d = 182.08 miles
b) [tex] \overline{v} = 54.5 mph [/tex]
Explanation:
a) The distance can be found as follows:
[tex] d_{T} = d_{1} + d_{2} + d_{3} [/tex]
[tex] d_{T} = v_{1}*t_{1} + v_{2}*t_{2} + v_{3}*t_{3} [/tex]
[tex] d_{T} = 67.4 mph*1.70 h + 0*23.4 min + 54.0 mph*1.25 h = 182.08 miles = 292.9 km [/tex]
b) The average speed can be calculated using the following equation:
[tex]\overline{v} = \frac{d_{f} - d_{i}}{t_{f} - t_{i}}[/tex]
Where "f" is for final and "i" for initial
[tex] \overline{v} = \frac{182.08 miles - 0 miles}{(1.70 h + 23.4 min*\frac{1 h}{60 min} + 1.25 h) - 0 h} = 54.5 mph [/tex]
I hope it helps you!