nuzzoliya
Answered

the London Eye is a giant Ferris wheel in London. It is the tallest Ferris wheel in Europe, with a diameter of 120m. the passenger capsules are attached to the circumference of the wheel, and the wheel rotates at 26cm per second. Find: a. the length that a passenger capsule would travel if the wheel makes a rotation of 200 degrees. b. the time, in minutes, that it would take for a passenger capsule to make a rotation of 200 degrees. c. The time, to the nearest whole minute, that it would take for a passenger capsule to make a full revolution.

Answer :

Answer:

a

   [tex]x = 209.5 \ m[/tex]

b

  [tex]t = 13.4 \ minutes[/tex]

c

  [tex]t_v = 24 \ minutes[/tex]

Step-by-step explanation:

From the question we are told that

   The diameter is  d  =  120 m

    The  speed of the wheels is [tex]v = 26 \ cm / s = 0.26 \ m/s[/tex]

 Generally the radius is mathematically represented as

          [tex]r = \frac{d}{2} = \frac{120}{2} = 60 \ m[/tex]

 Generally the circumference is  mathematically evaluated as

        [tex]C= 2 \pi r[/tex]    

        [tex]C= 2 * 3.142 * 60[/tex]    

         [tex]C= 377.04 \ m[/tex]

Generally  

        C  [tex]\to \ 360^o[/tex]

        x    [tex]\to \ 200^o[/tex]

=>     [tex]x = \frac{C * 200}{360}[/tex]

=>     [tex]x = \frac{ 377.04* 200}{360}[/tex]        

=>     [tex]x = 209.5 \ m[/tex]

 Generally the angular speed is mathematically evaluated as

        [tex]w = \frac{v}{r}[/tex]

=>     [tex]w = \frac{0.26}{60}[/tex]

=>     [tex]w = 0.00433 \ rad/s[/tex]

Generally

      [tex]1 \ radian \to 57.2958^o[/tex]

      z  radian  [tex]\to 200^o[/tex]

=>    [tex]z = \frac{200}{57.2958}[/tex]

=>    [tex]z = 3.49 \ radian[/tex]

Generally the time taken is mathematically evaluated as

       [tex]t = \frac{z}{w}[/tex]

=>    [tex]t = \frac{3.49}{0.00433}[/tex]

=>    [tex]t = 806.2 \ s[/tex]

Converting to minutes

       [tex]t = \frac{806.2}{60}[/tex]

       [tex]t = 13.4 \ minutes[/tex]

Generally given that one resolution is equal to  360° so

      [tex]1 \ radian \to 57.2958^o[/tex]

      v  radian  [tex]\to 360^o[/tex]

=>    [tex]v = \frac{360}{57.2958}[/tex]

=>    [tex]v = 6.28 \ radian[/tex]

Generally the time taken is mathematically evaluated as

       [tex]t_v = \frac{v}{w}[/tex]

     =>    [tex]t_v = \frac{6.28}{0.00433}[/tex]

        =>    [tex]t_v = 1451.1 \ s[/tex]

Converting to minutes

          =>    [tex]t_v = \frac{1451.1}{60}[/tex]  

          =>    [tex]t_v = 24 \ minutes[/tex]  

Other Questions