Answer :
Answer:
[tex]h^{-1}[/tex](x) = [tex]\frac{2}{3}[/tex] x + 11
Step-by-step explanation:
let y = h(x) and rearrange making x the subject , that is
y = [tex]\frac{3}{2}[/tex] (x - 11 ) ← multiply both sides by 2 to clear the fraction
2y = 3(x - 11) ← distribute
2y = 3x - 33 ( add 33 to both sides )
2y + 33 = 3x ( divide all terms by 3 )
[tex]\frac{2}{3}[/tex] y + 11 = x
Change y back into terms of x with x = [tex]h^{-1}[/tex](x) , thus
[tex]h^{-1}[/tex](x) = [tex]\frac{2}{3}[/tex] x + 11