Answer :

Hrishii

Answer:

t = 300

Step-by-step explanation:

[tex]\huge P = 10(2)^{ \frac{t}{60} } \\ \\ \huge 320 = 10(2)^{ \frac{t}{60} }\\(plug \: P= 320) \\ \\ \huge \frac{320}{10} = (2)^{ \frac{t}{60} } \\ \\ \huge 32 = (2)^{ \frac{t}{60} } \\ \\\huge {2}^{5} = (2)^{ \frac{t}{60} } \\ \\\huge 5 = \frac{t}{60} \\(bases\: are \:same, \:so \:exponents \: would \:be\: \\equal) \\ \huge 5 \times 60 = t \\ \\300 = t \\ \\\huge\purple {\boxed {t = 300}} [/tex]

mhanifa

Answer:

  • 300

Step-by-step explanation:

Given, the function:

  • P = 10(2)^(t/60)

To find

  • t if P= 320

Solution

Substituting P with its value of 320 in the given equation:

  • 320 = 10(2)^(t/60)
  • 32= (2)^(t/60)
  • 2^5 = (2)^(t/60)
  • 5 = t/60
  • t = 60*5
  • t = 300

Other Questions