Answer :

Answer:

Step-by-step explanation:

From the picture attached,

There are two parallel lines intersected by three transverse lines.

m∠2 = 98°, m∠3 = 23°, m∠8 = 70°

a). Since ∠1 and ∠2 are linear pairs,

   m∠1 + m∠2 = 180°

   m∠1 + 98° = 180°

   m∠1 = 180 - 98

   m∠1 = 82°

b). m∠4 = m∠7 [Corresponding angles]

   m∠7 = 180° - (m∠2 + m∠3) [Property of a triangle]

            = 180 - (98 + 23)

            = 180 - 121

            = 59°

    m∠4 = m∠7 = 59°

c). m∠5 = 180° - (m∠3 + m∠4)

             = 180° - (23° + 59°)

             = 180° - 82°

             = 98°

d). m∠6 = 180° - (m∠7 + m∠8)

             = 180° - (59° + 70°)

             = 180 - 129

             = 51°

e). m∠7 = 59° [Calculated in part b]

f). m∠9 = 180° - (m∠4 + m∠8) [Property of a triangle]

            = 180° - (59 + 70)°

            = 180 - 129

            = 51°

g). m∠10 = 180° - m∠9

               = 180 - 51

               = 129°

Other Questions