Answered

Q1) A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The refrigerant is 1,1,1,2-Tetrafluoroethane. Given that the evaporation T = 4°C, the condensation T = 34°C, η(compressor) = 0.76, and the refrigeration rate = 1200 kJ⋅s−1, determine the circulation rate of the refrigerant, the heat-transfer rate in the condenser, the power requirement, the coefficient of performance of the cycle, and the coefficient of performance of a Carnot refrigeration cycle operating


between the same temperature levels.

Answer :

batolisis

Answer:

i)   0.5071 (kg/s)

ii)  -1407.1 kj/kg

iii)  204.05 Kw

iv)  5.881

v)    9.238

Explanation:

Given Data:

evaporation temperature ( T ) = 4°c = 277.15 K

Condensation Temperature ( T ) = 34°c = 307.15 K

n ( compressor efficiency ) = 0.76

refrigeration rate = 1200 kJ.s^-1

i) determine the circulation rate of the refrigerant

m = [tex]\frac{Q}{H2 - H1}[/tex]  = [tex]\frac{Q}{H2 - H4\\}[/tex]  ------- 1

Q = 1200 Kj.s^-1

H2 = entropy at step 2 = 2508.9 (kJ / kg ) ( gotten from Table F )

H4 = entropy at step 4 = 142.4 ( kJ/ kg )

back to equation 1

m ( circulation rate of refrigerant ) = 0.5071 (kg/s)

ii) heat transfer rate in the condenser

Q = m ( H4 - H3 )

    = 0.5071 ( 142.4 - 2911.27 )

    = -1407.1 kj/kg

where H3 = H2 + ΔH23 = 2911.27 (kj/kg) ( as calculated )

iii) power requirement

w = m * ΔH23

   = 0.5071 (kg/s) * 402.37 (kj/kg) =  204.05 Kw

where: ΔH23 = [tex]\frac{H'3 - H2 }{0.76}[/tex] = [tex]\frac{2814.7-2508.9}{0.76}[/tex] = 402.37 (kj/kg)

iv) coefficient of performance of a cycle

W = Qc / w

  = 1200 Kj.s^-1/ 204.05 kw

  = 5.881

v) coefficient of performance of a Carnot refrigeration cycle

[tex]w_{carnot} = \frac{T2}{T4 - T2}[/tex]

            =  277.15 / ( 307.15 - 277.15 )

            = 9.238

Other Questions