Answer :
Answer:
[tex]\boxed {x \geq -2}[/tex]
Step-by-step explanation:
Solve for the following inequality:
[tex]168 \geq 7(-8x + 8)[/tex]
-Divide both sides by [tex]7[/tex]:
[tex]\frac{168}{7} \geq -8x + 8[/tex]
[tex]24 \geq -8x + 8[/tex]
-Switch sides:
[tex]24 \geq -8x + 8[/tex]
[tex]-8x + 8 \leq 24[/tex]
-Subtract [tex]8[/tex] to both sides:
[tex]-8x + 8 - 8 \leq 24 - 8[/tex]
[tex]-8x \leq 16[/tex]
-When you are dividing an integer by a negative integer, then the inequality sign changes. So, divide both sides by [tex]-8[/tex]:
[tex]\frac{-8x}{-8} \leq \frac{16}{-8}[/tex]
[tex]\boxed {x \geq -2}[/tex]