Answer :

Answer:

[tex]\boxed {x \geq -2}[/tex]

Step-by-step explanation:

Solve for the following inequality:

[tex]168 \geq 7(-8x + 8)[/tex]

-Divide both sides by [tex]7[/tex]:

[tex]\frac{168}{7} \geq -8x + 8[/tex]

[tex]24 \geq -8x + 8[/tex]

-Switch sides:

[tex]24 \geq -8x + 8[/tex]

[tex]-8x + 8 \leq 24[/tex]

-Subtract [tex]8[/tex] to both sides:

[tex]-8x + 8 - 8 \leq 24 - 8[/tex]

[tex]-8x \leq 16[/tex]

-When you are dividing an integer by a negative integer, then the inequality sign changes. So, divide both sides by [tex]-8[/tex]:

[tex]\frac{-8x}{-8} \leq \frac{16}{-8}[/tex]

[tex]\boxed {x \geq -2}[/tex]

Other Questions