Answer :
Answer:
20 years old
Step-by-step explanation:
Given
Base Amount = $10
Additional Amount = $20
Required
Determine the number of years where the total will accumulate to $4000
This question represents Sum of an AP series.
[tex]S_n = \frac{n}{2}(2a + (n - 1)d)[/tex]
Such that:
[tex]S_n = 4000[/tex]
[tex]a = 10[/tex]
[tex]d = 20[/tex]
Substitute these values in the above formula:
[tex]4000 = \frac{n}{2}(2 * 10 + (n - 1) * 20)[/tex]
[tex]4000 = \frac{n}{2}(20 + 20n - 20)[/tex]
[tex]4000 = \frac{n}{2}(20n)[/tex]
[tex]4000 = \frac{20n^2}{2}[/tex]
[tex]4000 = 10n^2[/tex]
Divide through by 10
[tex]400 = n^2[/tex]
Take square root of both sides
[tex]20 = n[/tex]
[tex]n = 20[/tex]