Answer :
Answer:
[tex]x = 2[/tex] corresponds to a horizontal line tangent to [tex]f(x) = -3\cdot x^{2}+12\cdot x -11[/tex].
Step-by-step explanation:
Let [tex]f(x) = -3\cdot x^{2}+12\cdot x -11[/tex], its first derivative represents a formula to determine the slope of lines tangent to a given point of the curve and slopes of horizontal tangent line corresponds to those values of [tex]x[/tex] such that [tex]f'(x) = 0[/tex].
We obtain the first derivative and equalize it to zero:
[tex]-6\cdot x +12 = 0[/tex]
And solve it for [tex]x[/tex]:
[tex]x = 2[/tex]
[tex]x = 2[/tex] corresponds to a horizontal line tangent to [tex]f(x) = -3\cdot x^{2}+12\cdot x -11[/tex].
