Answered

Which steps can be used to verify that tan(w + Pi) = tan(w)?

Rewrite tan(w + Pi) as tan(w) + tan(Pi). Then simplify the expression using tan(Pi) = 1.
Rewrite tan(w + Pi) as tan(w) + tan(Pi). Then simplify the expression using tan(Pi) = 0.
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 1.
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Which steps can be used to verify that tan(w + Pi) = tan(w)? Rewrite tan(w + Pi) as tan(w) + tan(Pi). Then simplify the expression using tan(Pi) = 1. Rewrite ta class=

Answer :

Answer:

D. Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Step-by-step explanation:

got it right on edge :)

${teks-lihat-gambar} likeafairy221b
MrRoyal

The steps to verify [tex]\tan(w + \pi) = \tan(w)[/tex] are (d) Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0

How to determine the steps?

The trigonometric expression is given as:

[tex]\tan(w + \pi) = \tan(w)[/tex]

Apply the tangent sum identity

[tex]\tan(w + \pi) = \frac{\tan(w) + \tan(\pi)}{1 - \tan(w)\tan(\pi)}[/tex]

As a general rule, we have:

[tex]\tan(\pi) = 0[/tex]

So, the equation becomes

[tex]\tan(w + \pi) = \frac{\tan(w) + 0}{1 - 0 *\tan(\pi)}[/tex]

Evaluate

[tex]\tan(w + \pi) = \tan(w)[/tex]

Hence, the steps to verify [tex]\tan(w + \pi) = \tan(w)[/tex] are (d)

Read more about trigonometric expression at:

https://brainly.com/question/8120556

#SPJ6

Other Questions