Answer:
A. ¾
B. 7½ pages
Step-by-step explanation:
A. Constant of proportionality, k, = [tex] \frac{y}{x} [/tex]
In this case, y = pages, while x = days.
Take any coordinate pair to calculate the constant of proportionality, k. Let's use (3, 4).
[tex] k = \frac{y}{x} = \frac{3}{4} [/tex]
Constant of proportionality = ¾.
B. Number of pages (y), Indira would read in 10 days (x).
Substitute x = 10 and k = ¾, into [tex] k = \frac{y}{x} [/tex]
[tex] \frac{3}{4} = \frac{y}{10} [/tex]
Multiply both sides by 10
[tex] \frac{3}{4}*10 = \frac{y}{10}*10 [/tex]
[tex] \frac{3}{2}*5 = y [/tex]
[tex] \frac{15}{2} = y [/tex]
[tex] 7\frac{1}{2} = y [/tex]
Number of pages Indira can read in 10 days is 7½ pages.