Answer:
[tex]d=\frac{147}{6.3}[/tex]
Step-by-step explanation:
- The right side is a ratio [tex]0.84:\frac{7}{15}[/tex]
- a ratio can be written as a fraction [tex]\frac{0.84}{\frac{7}{15} }[/tex] this means [tex]0.84[/tex] divide by [tex]\frac{7}{15}[/tex] which is the same as [tex]0.84*\frac{15}{7}=\frac{12.6}{7}[/tex]
- On the left, change the mixed fraction [tex]3\frac{1}{3}[/tex] to the improper fraction [tex]\frac{10}{3}[/tex]
- Then divide [tex]0.3d-1[/tex] by [tex]\frac{10}{3}[/tex] which is same as [tex](0.3d-1)*\frac{3}{10} =\frac{3(0.3d-1)}{10}[/tex]
- So the equation is now [tex]\frac{3(0.3d-1)}{10}=\frac{12.6}{7}[/tex]
- Now multiply both sides by 10 and 7:
- [tex](10)*(7)*\frac{3(0.3d-1)}{10}=\frac{12.6}{7}*(7)*(10)\\7*3(0.3d-1)=12.6*(10)\\21*(0.3d-1)=126\\6.3d-21=126\\6.3d-21+(21)=126+(21)\\6.3d=147\\d=\frac{147}{6.3}[/tex]