Answer :

Answer:

The volume of the tetrahedron is

[tex]\frac{-32}{3}[/tex]

Step-by-step explanation:

To find the volume of a tetrahedron with vertices (2, 0, 0), (0, 4, 0), (0, 0, 4), (2, 4, 4).

We know by definition that the volume of a tetrahedron with vertices [tex](x_{1}, y_{1}, z_{1}), (x_{2}, y_{2}, z_{2}), (x_{3}, y_{3}, z_{3})[/tex] is

[tex]\frac{1}{6}\begin{vmatrix}

2 & 0 & 0 & 1\\

0 & 4 & 0 & 1\\

0 & 0 & 4 & 1\\

2 & 4 & 4 & 1

\end{vmatrix}[/tex]

From here we have:

[tex]\frac{1}{6}\begin{vmatrix}

x_1 & y_1 & z_1 & 1\\

x_2 & y_2 & y_2 & 1\\

x_3 & y_3 & z_3 & 1\\

x_4 & y_4 & y_4 & 1

\end{vmatrix}[/tex]

Finding the determinant of that matrix we have:

[tex]\frac{1}{6} (-64)[/tex] = [tex]\frac{-32}{3}[/tex]

Other Questions