Answer :
By the chain rule:
( sin ( 2 x ) ) ` = cos ( 2 x ) · ( 2 x )` = 2 cos ( 2 x )
f ` ( sin 2 x ) = [tex] \lim_{h \to 0} \frac{sin(2x+2h)- sin(2x)}{h}= \\ \lim_{h \to 0} \frac{sin(2x)*sin(2h)+sin(2h)cos(2x)-sin(2x)}{h} = \\ \lim_{h \to 0} \frac{sin(2h)*cos(2x)}{h} = \\ \lim_{h \to 0} \frac{2sin(2h)*cos(2x)}{2h}= [/tex]
= 2 cos ( 2 x )
because: [tex] \lim_{x \to 0} \frac{sinx}{x} =1 [/tex]
This is the reason why Δ x ( or h here ) is cancelled in the denominator
( sin ( 2 x ) ) ` = cos ( 2 x ) · ( 2 x )` = 2 cos ( 2 x )
f ` ( sin 2 x ) = [tex] \lim_{h \to 0} \frac{sin(2x+2h)- sin(2x)}{h}= \\ \lim_{h \to 0} \frac{sin(2x)*sin(2h)+sin(2h)cos(2x)-sin(2x)}{h} = \\ \lim_{h \to 0} \frac{sin(2h)*cos(2x)}{h} = \\ \lim_{h \to 0} \frac{2sin(2h)*cos(2x)}{2h}= [/tex]
= 2 cos ( 2 x )
because: [tex] \lim_{x \to 0} \frac{sinx}{x} =1 [/tex]
This is the reason why Δ x ( or h here ) is cancelled in the denominator