If anyone could help that would be great! The topic is calculus, and substitution + integrals. I need help with the ones circled in red. I will award brainliest and +20 points!!

If anyone could help that would be great! The topic is calculus, and substitution + integrals. I need help with the ones circled in red. I will award brainliest class=

Answer :

Space

Answer:

[tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx = -ln(2)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Trig Derivatives

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Trig Integration

Logarithmic Integration

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:                                                                                                             [tex]\displaystyle u = 1 + cos(x)[/tex]
  2. [u] Differentiate [Trig Derivative]:                                                                 [tex]\displaystyle du = -sin(x) \ dx[/tex]
  3. [Bounds of Integration] Change:                                                                 [tex]\displaystyle [\frac{1}{2}, 1][/tex]

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx = -\int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{-sin \ x}{1 + cos \ x}} \, dx[/tex]
  2. [Integral] U-Substitution:                                                                               [tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx = -\int\limits^{1}_{\frac{1}{2}} {\frac{1}{u}} \, du[/tex]
  3. [Integral] Logarithmic Integration:                                                               [tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx = -(ln|u|) \bigg| \limits^{1}_{\frac{1}{2}}[/tex]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           [tex]\displaystyle \int\limits^{\frac{-\pi}{2}}_{\frac{-2 \pi}{3}} {\frac{sin \ x}{1 + cos \ x}} \, dx = -ln(2)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Other Questions