Answer :

elcharly64

Answer:

[tex]\sqrt{3}\cdot\sqrt{6}=3\cdot\sqrt{2}[/tex]

Step-by-step explanation:

Radicals

We have the expression:

[tex]\sqrt{3}\cdot\sqrt{6}[/tex]

Since 6=2*3, it can be rewritten as:

[tex]\sqrt{3}\cdot\sqrt{6}=\sqrt{3}\cdot\sqrt{2}\cdot\sqrt{3}[/tex]

Joining like radicals:

[tex]\sqrt{3}\cdot\sqrt{6}=\sqrt{3}\cdot\sqrt{3}\cdot\sqrt{2}[/tex]

[tex]\sqrt{3}\cdot\sqrt{6}=\sqrt{9}\cdot\sqrt{2}[/tex]

[tex]\boxed{\sqrt{3}\cdot\sqrt{6}=3\cdot\sqrt{2}}[/tex]

This is the required form with b=2

The integer b for [tex]\rm b\sqrt{2}[/tex] such as [tex]\rm \sqrt{3}\times \sqrt{6} = b\sqrt{2}[/tex] holds good is 3 .

According to the property of square root for any  positive integer x

[tex]\rm \sqrt{x} \times \sqrt{x} = x....(1)[/tex]

According to the  given condition

[tex]\rm \sqrt{3}\times \sqrt{6} = b\sqrt{2}[/tex]

We can simplify the left hand side  of the equation as follows

[tex]\sqrt{3}\times \sqrt{6}[/tex]

[tex]= \sqrt{3}\times \sqrt{2\times 3 }[/tex]

[tex]= 3\sqrt{2}[/tex]      ( By using equation (1))

So on comparing with right hand side of equation (1) we get

[tex]\rm 3\sqrt{2} = b\sqrt{2}\\hence \; on\; comparing\\b = 3[/tex]

The integer b for [tex]\rm b\sqrt{2}[/tex] such as [tex]\rm \sqrt{3}\times \sqrt{6} = b\sqrt{2}[/tex] holds good is 3 .

For more information please refer to the link below

https://brainly.com/question/17309565

Other Questions