Answer :

absor201

Answer:

We conclude that:

[tex]\left(\:\:\frac{x^4}{\frac{3x^2}{3}}\right)^{\frac{1}{3}}\:=\:x^{\frac{2}{3}}[/tex]        

Hence, option A i.e. [tex]x^{\frac{2}{3}}[/tex]  is true.    

Step-by-step explanation:

Given the expression

[tex]\left(\:\:\frac{x^4}{\frac{3x^2}{3}}\right)^{\frac{1}{3}}[/tex]

Apply exponent rule:   [tex]\left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}[/tex]

[tex]\left(\frac{x^4}{\frac{3x^2}{3}}\right)^{\frac{1}{3}}=\frac{\left(x^4\right)^{\frac{1}{3}}}{\left(\frac{3x^2}{3}\right)^{\frac{1}{3}}}[/tex]

             [tex]=\frac{x^{\frac{4}{3}}}{\left(\frac{3x^2}{3}\right)^{\frac{1}{3}}}[/tex]        ∵ [tex]\:\:\:\left(x^4\right)^{\frac{1}{3}}=x^{\frac{4}{3}}[/tex]

             [tex]=\frac{x^{\frac{4}{3}}}{\frac{\left(3x^2\right)^{\frac{1}{3}}}{3^{\frac{1}{3}}}}[/tex]

             [tex]=\frac{x^{\frac{4}{3}}}{x^{\frac{2}{3}}}[/tex]

Apply exponent rule:    [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]

             [tex]=x^{\frac{4}{3}-\frac{2}{3}}[/tex]          

             [tex]=x^{\frac{2}{3}}\\[/tex]

Therefore, we conclude that:

[tex]\left(\:\:\frac{x^4}{\frac{3x^2}{3}}\right)^{\frac{1}{3}}\:=\:x^{\frac{2}{3}}[/tex]        

Hence, option A i.e. [tex]x^{\frac{2}{3}}[/tex]  is true.                                        

Other Questions