Answer :
Solution :
It is given that we use CI = 95%
Therefore, the value of z = 1.96 as the [tex]$P(-1.96 <z<1.96)=0.95$[/tex]
Also, here it is given that E = 0.05 and the value of p = 0.25
Thus from the formula of E, we can find n
[tex]$E= z \times \sqrt{\frac{pq}{n}}[/tex]
[tex]$n= \left(\frac{z}{E}\right)^2 \times p \times q$[/tex]
[tex]$n= \left(\frac{1.96}{0.05}\right)^2 \times 0.25 \times 0.75$[/tex]
= 288.12
= 289