an open box with a square base have a volume of 8m^3. the material of the base costs $8 per square meter and the material for the sides costs $6 per square meter. express the cost of the materials as a function of the width (w) of the base

Answer :

(Refer to picture for diagram.)

Area of base [tex]=w^{2}[/tex]
Area of one side [tex]=\frac{8}{w^{2}}*w=\frac{8}{w}[/tex]

Cost of base material [tex]=8w^{2}[/tex]
Cost of material for a side [tex]=6*\frac{8}{w}=\frac{48}{w}[/tex]
There are 4 sides so [tex]4*\frac{48}{w}=\frac{192}{w}[/tex]

Total cost [tex]C(w)=8w^{2}+\frac{192}{w}[/tex]
${teks-lihat-gambar} bartdrinksmalk
MrRoyal

The volume of a box is the amount of space in it.

The cost function is: [tex]\mathbf{C(w)=8w^2 + \frac{192}{w}}[/tex]

The volume of the box is:

[tex]\mathbf{V = 8}[/tex]

Assume the base length is w.

So, the area of the base is:

[tex]\mathbf{A_1 = w \times w}[/tex]

[tex]\mathbf{A_1 = w^2}[/tex]

The base material costs $8 per square meter.

So, the cost of the base material would be:

[tex]\mathbf{C_1 = 8w^2}[/tex]

Recall that:

[tex]\mathbf{V = 8}[/tex]

The volume of a box with a square base is:

[tex]\mathbf{V = w^2h}[/tex]

Make h the subject

[tex]\mathbf{h = \frac{V}{w^2}}[/tex]

Substitute 8 for V

[tex]\mathbf{h = \frac{8}{w^2}}[/tex]

The side area is:

[tex]\mathbf{A =4wh}[/tex]

So, we have:

[tex]\mathbf{A = 4 \times w \times \frac{8}{w^2}}[/tex]

[tex]\mathbf{A = \frac{32}{w}}[/tex]

The side materials cost $6 per square meter.

So, the cost of the side materials would be:

[tex]\mathbf{C_2 = 6 \times \frac{32}{w}}[/tex]

[tex]\mathbf{C_2 = \frac{192}{w}}[/tex]

The cost function of the box is:

[tex]\mathbf{C =C_1 + C_2}[/tex]

So, we have:

[tex]\mathbf{C=8w^2 + \frac{192}{w}}[/tex]

Hence, the cost function is:

[tex]\mathbf{C(w)=8w^2 + \frac{192}{w}}[/tex]

Read more about cost functions at:

https://brainly.com/question/22401743

Other Questions