Answer :
Answer:
I = 1.093 x 10⁻⁴ kg.m²
Here, all the other data, namely, the height of the can, length of the inclined plane, angle of inclination, time to reach the bottom, are unnecessary.
Explanation:
The can which is filled with the soup can be modelled as a solid cylinder. The moment of inertia of this solid cylinder about its axis of rotation can be given by the following formula:
[tex]I = \frac{1}{2}mr^2[/tex]
where,
I = moment of inertia of can = ?
m = mass of can with soup = 215 g = 0.215 kg
r = radius of can = diameter/2 = 6.38 cm/2 = 3.19 cm = 0.0319 m
Therefore,
[tex]I = \frac{1}{2}(0.215\ kg)(0.0319\ m)^2 \\[/tex]
I = 1.093 x 10⁻⁴ kg.m²
Here, all the other data, namely, the height of the can, length of the inclined plane, angle of inclination, time to reach the bottom, are unnecessary.