Answer :
Solution :
Method I : SL method
Cost of equipment = $ 500,000
Salvage value = $ 50,000
Expected life = 5 years
Depreciation = [tex]$\frac{\text{(cost of equipment - salvage value)}}{\text{expected life}}$[/tex]
[tex]$=\frac{(500,000-50,000)}{5}$[/tex]
= 90,000
Therefore, the [tex]$\text{depreciation}$[/tex] is $ 90,000 using the SL method.
Method II : DDB method
Cost of equipment = $ 500,000
Expected life = 5 years
So, calculating the [tex]$\text{depreciation}$[/tex] at the end of the year 1 is :
Depreciation = [tex]$\text{cost of equipment }\times \frac{2}{\text{expected life}}$[/tex]
[tex]$=500,000\times \frac{2}{5}$[/tex]
= $ 200,000
So the book value at the end of the year 1 = $ 500,000 - $ 200,000
= $ 300,000
Now calculating the [tex]$\text{depreciation}$[/tex] at the end of the year 2 is :
Depreciation = [tex]$\text{book value at the end of year 1 }\times \frac{2}{\text{expected life}}$[/tex]
[tex]$=300,000\times \frac{2}{5}$[/tex]
= $ 120,000
Therefore, the [tex]$\text{depreciating}$[/tex] value is $ 120,000 using the DDB method.
Method III : 150% DB method
Cost of equipment = $ 500,000
Expected life = 5 years
So, calculating the depreciation in year 1 is :
Depreciation = [tex]$\text{cost of equipment }\times \frac{1.5}{\text{expected life}}$[/tex]
[tex]$=500,000\times \frac{1.5}{5}$[/tex]
= $ 150,000
So the book value at the end of the year 1 = $ 500,000 - $ 150,000
= $ 350,000
Now calculating the depreciation in year 2 is :
Depreciation = [tex]$\text{book value at the end of year 1 }\times \frac{1.5}{\text{expected life}}$[/tex]
[tex]$=350,000\times \frac{1.5}{5}$[/tex]
= $ 105,000
Therefore, the [tex]$\text{depreciating}$[/tex] value is $ 105,000 using the 150% DB method.