which of the following pairs of functions are inverses of each others

Answer:
(B).
Step-by-step explanation:
(D). f(x) = 2x³ + 9
Solve equation y = 2x³ + 9 for "x"
2x³ = y - 9
x³ = [tex]\frac{y-9}{2}[/tex]
x = [tex]\sqrt[3]{\frac{y-9}{2} }[/tex]
Switch "x" and "y"
y = [tex]\sqrt[3]{\frac{x-9}{2} }[/tex] or g(x) = [tex]\sqrt[3]{\frac{x-9}{2} }[/tex]
(C). y = [tex]\frac{x}{4}[/tex] + 10
[tex]\frac{x}{4}[/tex] = y - 10
x = 4y - 40
g(x) = 4x - 40
(B). y = [tex]\frac{12}{x}[/tex] - 18
[tex]\frac{12}{x}[/tex] = y + 18
x = [tex]\frac{12}{y+18}[/tex]
g(x) = [tex]\frac{12}{x+18}[/tex]