Answer :
Answer:
[tex]7.32\ \text{m/s}[/tex]
Explanation:
[tex]v_1[/tex] = Velocity at initial point = 0
[tex]P_1[/tex] = Pressure in tank = 120 kPa
[tex]P_2[/tex] = Pressure at outlet = 101 kPa
[tex]\rho[/tex] = Density of kerosene = [tex]750\ \text{kg/m}^3[/tex]
[tex]Z_1[/tex] = Tank height = 15 cm
[tex]Z_2[/tex] = Height of pipe exit = 0
[tex]g[/tex] = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
From Bernoulli's equation we have
[tex]\dfrac{P_1}{\rho g}+\dfrac{v_1^2}{2g}+Z_1=\dfrac{P_2}{\rho g}+\dfrac{v_2^2}{2g}+Z_2\\\Rightarrow \dfrac{P_1}{\rho g}+Z_1=\dfrac{P_2}{\rho g}+\dfrac{v_2^2}{2g}\\\Rightarrow v_2=\sqrt{2g(\dfrac{P_1}{\rho g}+Z_1-\dfrac{P_2}{\rho g})}\\\Rightarrow v_2=\sqrt{2\times 9.81(\dfrac{120\times 10^3}{750\times 9.81}+0.15-\dfrac{101\times 10^3}{750\times 9.81})}\\\Rightarrow v_2=7.32\ \text{m/s}[/tex]
The exit velocity from the tube is [tex]7.32\ \text{m/s}[/tex].