Answer :

Given:

[tex]\cos (55\dfrac{1}{2})^\circ\approx 0.566[/tex]

To find:

The angle, in degrees, that has a sine of approximately 0.566.

Solution:

We know that,

[tex]\sin(90^\circ-x)=\cos x[/tex]

We have,

[tex]\cos (55\dfrac{1}{2})^\circ\approx 0.566[/tex]

Using the above trigonometric identity, it can be written as:

[tex]\sin (90-55\dfrac{1}{2})^\circ\approx 0.566[/tex]

[tex]\sin (90-\dfrac{110+1}{2})^\circ\approx 0.566[/tex]

[tex]\sin (90-\dfrac{111}{2})^\circ\approx 0.566[/tex]

Taking LCM, we get

[tex]\sin (\dfrac{180-111}{2})^\circ\approx 0.566[/tex]

[tex]\sin (\dfrac{69}{2})^\circ\approx 0.566[/tex]

[tex]\sin (34\dfrac{1}{2})^\circ\approx 0.566[/tex]

Therefore, the angle [tex]34\dfrac{1}{2}[/tex] degrees has a sine of approximately 0.566.

Other Questions