GGray15
Answered

What is the equation in point-slope form of a line that passes through the points (3, −5) and (−8, 4)?
A. y−4=−1/5(x+8)
B. y+4=−9/11(x−8)
C. y−4=−9/11(x+8)
D. y+4=−1/5(x−8)

Answer :

C. y−4=−9/11(x+8)

that's your answer
...................................

Answer:

C. [tex]y-4=-\frac{9}{11}(x+8)[/tex]

Step-by-step explanation:

The point slope form is  [tex]y-y_1=m(x-x_1)[/tex] where m is the slope,

First we are going to calculate [tex]m[/tex]:

If you have two points:

[tex]A=(x_1,y_1)\\B=(x_2,y_2)[/tex]

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

In this case: A=(-8,4) and B=(3,-5)

[tex]x_1=-8, y_1=4\\x_2=3, y_2=-5[/tex]

Replacing in the formula:

[tex]m=\frac{-5-4}{3-(-8)}=-\frac{9}{11}[/tex]

Then [tex]y-y_1=-\frac{9}{11}(x-x_1)[/tex],

Now we have to replace with: [tex]x_1=-8, y_1=4[/tex],

[tex]y-y_1=-\frac{9}{11}(x-x_1)\\\\y-4=-\frac{9}{11}(x-(-8))\\\\y-4=-\frac{9}{11}(x+8)[/tex]

Then the equation in point-slope form of a line that passes through the points (3, −5) and (−8, 4) is:

C. [tex]y-4=-\frac{9}{11}(x+8)[/tex]

Other Questions