Answer :
Answer:
Point N(4, 1)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle y = \sqrt{x - 3}[/tex]
[tex]\displaystyle y' = \frac{1}{2}[/tex]
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y = (x - 3)^{\frac{1}{2}}[/tex]
- Chain Rule: [tex]\displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3][/tex]
- Basic Power Rule: [tex]\displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)[/tex]
- Simplify: [tex]\displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1[/tex]
- Multiply: [tex]\displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}[/tex]
- [Derivative] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}[/tex]
- [Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y' = \frac{1}{2\sqrt{x - 3}}[/tex]
Step 3: Solve
Find coordinates
x-coordinate
- Substitute in y' [Derivative]: [tex]\displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}[/tex]
- [Multiplication Property of Equality] Multiply 2 on both sides: [tex]\displaystyle 1 = \frac{1}{\sqrt{x - 3}}[/tex]
- [Multiplication Property of Equality] Multiply √(x - 3) on both sides: [tex]\displaystyle \sqrt{x - 3} = 1[/tex]
- [Equality Property] Square both sides: [tex]\displaystyle x - 3 = 1[/tex]
- [Addition Property of Equality] Add 3 on both sides: [tex]\displaystyle x = 4[/tex]
y-coordinate
- Substitute in x [Function]: [tex]\displaystyle y = \sqrt{4 - 3}[/tex]
- [√Radical] Subtract: [tex]\displaystyle y = \sqrt{1}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle y = 1[/tex]
∴ Coordinates of Point N is (4, 1).
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e