Answer :

[tex]\begin{cases} h(x)=\sqrt{x}\\ g(x)=4x^2+4 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ g(\sqrt{a})=4(\sqrt{a})^2+4\implies g(\sqrt{a})=4\sqrt{a^2}+4\implies g(\sqrt{a})=\boxed{4a+4} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ h(~~g(\sqrt{a})~~)\implies h\left( \boxed{4a+4} \right)=\sqrt{4a+4}\implies h(~~4a+4~~)=\sqrt{4(a+1)} \\\\\\ h(~~4a+4~~)=\sqrt{2^2(a+1)}\implies h(~~4a+4~~)=2\sqrt{a+1}[/tex]

Other Questions