Answer :
Part A: f ( t ) = t² + 12 t - 19 =
= ( t² + 12 t + 36 ) - 36 - 18 = ( t + 6 )² - 54 ( the vertex form )
Part B : The vertex : ( - 6, - 54 ). This is the minimum, because the parabola is open up ( a > 0 ).
Part C : The axis of symmetry: t = - 6
= ( t² + 12 t + 36 ) - 36 - 18 = ( t + 6 )² - 54 ( the vertex form )
Part B : The vertex : ( - 6, - 54 ). This is the minimum, because the parabola is open up ( a > 0 ).
Part C : The axis of symmetry: t = - 6